Telegram Group & Telegram Channel
Problem: Let A be an unsorted array of n floating numbers. Propose an O(n) time algorithm to compute the (floating-point) number x (not necessarily an element of A) for which max|A[i] - x| is as small as possible for all 1 <= i <= n. (Here |y| means absolute value of y)

Solution: The problem statement can be interpreted as finding a point x such that it's distance from the farthest point is minimized (since, |A[i] - x| is given which is actually distance between two point). Note: we don't need to minimize distance from every point, we just need to minimize the distance of the point which is farthest to it. So we try to put our x as close to the farthest point. But in doing so the point which is near may go far. So the optimal solution is finding the minimum point in the array A (let it be named MN) and finding the maximum point of A (let it be named MX) and the result is the mid-point of these two points, i.e x=(MN+MX)/2. Note: All other point between MN and MX will have distance lesser hence we do not bother it. We could not get more optimal point than this one. Now, MX and MN can be easily determined by travelling once the array. Hence the time complexity is O(n).



Happy Coding!!!



tg-me.com/Competitive_Programming_Cpp/42
Create:
Last Update:

Problem: Let A be an unsorted array of n floating numbers. Propose an O(n) time algorithm to compute the (floating-point) number x (not necessarily an element of A) for which max|A[i] - x| is as small as possible for all 1 <= i <= n. (Here |y| means absolute value of y)

Solution: The problem statement can be interpreted as finding a point x such that it's distance from the farthest point is minimized (since, |A[i] - x| is given which is actually distance between two point). Note: we don't need to minimize distance from every point, we just need to minimize the distance of the point which is farthest to it. So we try to put our x as close to the farthest point. But in doing so the point which is near may go far. So the optimal solution is finding the minimum point in the array A (let it be named MN) and finding the maximum point of A (let it be named MX) and the result is the mid-point of these two points, i.e x=(MN+MX)/2. Note: All other point between MN and MX will have distance lesser hence we do not bother it. We could not get more optimal point than this one. Now, MX and MN can be easily determined by travelling once the array. Hence the time complexity is O(n).



Happy Coding!!!

BY Competitive Programming


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/Competitive_Programming_Cpp/42

View MORE
Open in Telegram


Competitive Programming Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Competitive Programming from ye


Telegram Competitive Programming
FROM USA